Effect of hyaluronidase on tissue-engineered human septal cartilage.

نویسندگان

  • Deborah Watson
  • Marsha S Reuther
  • Van W Wong
  • Robert L Sah
  • Koichi Masuda
  • Kristen K Briggs
چکیده

OBJECTIVES Structural properties of tissue-engineered cartilage can be optimized by altering its collagen to sulfated glycosaminoglycan (sGAG) ratio with hyaluronidase. The objective was to determine if treatment of neocartilage constructs with hyaluronidase leads to increased collagen:sGAG ratios, as seen in native tissue, and improved tensile properties. STUDY DESIGN Prospective, basic science. METHODS Engineered human septal cartilage from 12 patients was treated with hyaluronidase prior to culture. Control and treated constructs were analyzed at 3, 6, or 9 weeks for their biochemical, biomechanical, and histological properties. RESULTS Levels of sGAG were significantly reduced in treated constructs when compared with control constructs at 3, 6, and 9 weeks. Treated constructs had higher collagen:sGAG ratios when compared with control constructs at 3, 6, and 9 weeks. Treated constructs had greater tensile strength, strain at failure, and increased stiffness as measured by the equilibrium and ramp tensile moduli when compared with the untreated control constructs. Continued time in culture improved tensile strength in both treated and control constructs. CONCLUSION Hyaluronidase treatment of engineered septal cartilage decreased total sGAG content without inhibiting expansive growth of the constructs. Decreased sGAG in treated constructs resulted in increased collagen to sGAG ratios and was associated with an increase in tensile strength and stiffness. With additional culture time, sGAG increased modestly in depleted constructs, and some initial gains in tensile properties were dampened. Alterations in the dosage of hyalurondiase during neocartilage fabrication can create constructs that have improved biomechanical properties for eventual surgical implantation. LEVEL OF EVIDENCE NA. Laryngoscope, 126:1984-1989, 2016.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review Study: Effect of Growth Factors on Human Mesenchymal Stem Cells Differentiation into Cartilage Tissue

Hyaline cartilage is a vascular and neural tissue with scanty chondrocytes and limited regenerative ability. After some serious injuries of the cartilage, healing process will take place through the formation of fibrocartilage structures. Currently, tissue engineering and cell therapy are 2 interesting therapeutic fields dealing with regenerative medicine. In this regard, tissue&...

متن کامل

Designing of Human Cartilage Tissue, by Differentiation of Adipose-Derived Stem Cells With BMP-6 in Alginate Scaffold

Purpose: In the present study the effect of BMP-6 was investigated on chondrogenesis of adiposederived stem cells. Materials and Methods: Mesenchymal stem cells derived from subcutaneous adipose tissue were cultured on alginate scaffold to induce chondrogenesis in experimental group, with chondrogenic medium having BMP-6 growth factor for 3 weeks. In control group medium without BMP-6 was appli...

متن کامل

Outgrowth of chondrocytes from human articular cartilage explants and expression of alpha-smooth muscle actin.

The objectives of this study were to investigate the effect of various enzymatic treatments on the outgrowth of chondrocytes from explants of adult human articular cartilage and the expression of a specific contractile protein isoform, alpha-smooth muscle actin, known to facilitate wound closure in other connective tissues. Explants of articular cartilage were prepared from specimens obtained f...

متن کامل

Biomechanical characterisation of the human nasal cartilages; implications for tissue engineering

Nasal reconstruction is currently performed using autologous grafts provides but is limited by donor site morbidity, tissue availability and potentially graft failure. Additionally, current alternative alloplastic materials are limited by their high extrusion and infection rates. Matching mechanical properties of synthetic materials to the native tissue they are replacing has shown to be import...

متن کامل

A compositional analysis of human nasal septal cartilage.

BACKGROUND Nasal septal cartilage is well established as an autograft material. Tissue engineering methods are now being developed to synthesize cartilage constructs with the properties of this type of cartilage. However, important baseline data on the composition of native septal cartilage is sparse. OBJECTIVES To characterize quantitatively the major biochemical constituents of native adult...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Laryngoscope

دوره 126 9  شماره 

صفحات  -

تاریخ انتشار 2016